1248

CERTAIN PROBLEMS WITH THE APPLICATION OF STOCHASTIC
DIFFUSION PROCESSES FOR THE DESCRIPTION OF CHEMICAL
ENGINEERING PHENOMENA. RELATIONS BETWEEN

DIFFERENT TYPES OF DIFFUSION EQUATIONS

Vladimir KUDRNA® and Daniel Turzik?

¢ Department of Chemical Engineering,

Prague Institute of Chemical Technology, 166 28 Prague 6
b Department of Mathematics,

Prague Institute of Chemical Technology, 166 28 Prague 6

Received December 4, 1990
Accepted September 23, 1991

The dependence is discussed between the ‘‘classical’’ diffusion equation commonly used in
chemical engineering and the stochastic differential equations which describe this diffusion
from the point of view of micromotion of individual particles. The resulting equations can be
useful above all for the modelling of more complex diffusion processes.

In preceding papers! ™3, some problems were pointed out arising on applying the

mathematical theory of random processes*” ¢ for the description of transport pro-
cesses used in chemical engineering. The differences were shown in the record of the
Kolgomorov and “‘classical” diffusion equation which existed in case that the diffu-
sion coefficients in the equations are functions of spatial coordinates®.

In addition the works® ~® were cited referring to the relations between the diffusion
equations and the stochastic differential equations and to the fact that different forms
of the record of diffusion equations depend on the different definitions of stochastic
integral. A new definition of the stochastic integral was proposed? which, in some
cases, makes it possible to record the “‘classical” form of diffusion equation used
in chemical engineering for the description of mass and heat transfer.

In the next paper®, some additional problems were pointed out arising from the
record of diffusion equations in curvilinear coordinates. Among others also the
complication of conditions is concerned which make it possible to record in this
case the “classical” diffusion equation on the basis of stochastic approach.

In the present contribution, the conditions mentioned are given in more detail;
as the most general case, their record in orthogonal curvilinear coordinates is con-
sidered. The cases are presented in which we succeeded in finding the analytical
solution. To be able to discuss the different forms of diffusion equations and relations
between them we shall write down the definition of stochastic integral in a generalized
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Diffusion Equations 1249

form first and then the relations between the single forms of stochastic differential
equations.

““Generalized” Record of Stochastic Differential Equation

In preceding paper?, the “‘generalized” stochastic integral was defined — in some-
what different designation — by relation (23.2)* as

= [G(X(1), 1) . dW(D)]* =

n—1
=1lim Y G(X(1,) + « AX,, 1, + 2 At,). AW, [0 x< 1], (1)
e—0 k=0

where a is the constant which can acquire values in the given interval. X(¢) denotes
the random vector function of deterministic argument ¢ whose physical meaning
is time. G(x, t) is the second-order tensor whose single components are in general
deterministic functions of spatial coordinates designated here by the position vector
x and explicitly also by time. Function W(r) is the multidimensional Wiener process
— random function of time — whose probability density is determined by the rela-
tion (compare relation (3.2))

An

o

=

T PLAHD) < w)} = (200 exp (= 3, w2f2e). ®)
l:[lawi =t =t

The increments of quantities in Eq. (1) are defined by the relations

AX, = X(t.) = X(t); AW = W(n ) — W(t) 5 At =ty — e (3)

and ¢ = max At,. The sequence of single values of arguments is given by the rela-
tions t, =ty <t; < <l < teypy <0 < t, =t,. Full stop between symbols
G . W denotes the scalar (inner) product.

The fundamental — mathematically correct — definition of stochastic integral is
the Ito definition (see, e.g., ref.”) expressed by Eq. (1) for « = 0 for only in this case
the factors G . AW, of each term of the sum on the right-hand side of the equation
can be stochastically independent. (In ref.2, the quantities which are connected with
this Ito definition are denoted by superscript 1.)

In literature® =7 is further given the definition of the Stratonovich integral (for the
value of & = 1/2 in Eq. (1)); the author® himself stems here from the Ito definition.

b References to the relations in foregoing papers! ™3 will be designated in the form (X.I)
where K stands for the number of relation and I for the reference number in the present list
of references.
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1250 Kudrna, Turzik:

(The corresponding quantities connected with the Stratonovich definition are de-
signated by superscript S in ref.2.) This procedure was generalized?, and it is possible
to show easily that the relation between the generalized definition of the stochastic
integral and the Ito definition is given by the equation

e [G(X(1),t) . dW(D)]* = [iz [G(X(1). 1) . dW(D)]° + o [ §(X(2), 1) dt, »
4

where the vector of “semidiffusion” flux j is given by the relation (compare (15.2))

JX(), 1) = [G*(X(2), ). V] .G*(X(2), 1) . )
Symbol V denotes the Hamilton differential operator and G* tensor transposed
with respect to tensor G. Square brackets determine the order of operations. The
different expressions for the stochastic integral are conditioned by the fact that
the difference of the Wiener process, AW,, converges to zero more slowly than the
time interval At,.
The proposed record of stochastic integral makes it possible to get a generalized
record of stochastic differential equation which will be given here in the integrated
form

X(t) =y + [: v*(X(s), 5) ds + [ [G(X(s), 5) . dW(s)]"; (6)

y denotes the initial condition of solution, i.e., the value of random function X at
instant 7. Deterministic vector function v* is often called the drift velocity and the
first integral on the right-hand side of the relation is a common integral in the
Riemann sense. In order that the solutions X(z) for different definitions of the
second integral may be identical (in the stochastic sense), the drift velocity must
acquire different expressions. It follows from Eqgs (4) and (6) that the relation

vi(X(1). 1) = v¥(X(1), 1) + (B — @)j(X(1), 1), [0 ap=1] (7)

holds between these expressions. _

The given relations may be of importance for the stochastic modelling of diffusion
processes in terms of computers; it is reported'® that the Stratonovich form of
stochastic integral is suitable for this purpose.

In diffusion processes, the random function X(t) determines the position of dif-
fusing particle in the space. Its general probabilities characteristic is given by the
transitive probability density

n n

f= ity = o PO < XK@ =) s [
Eaxi =

In the braces the probability is written down expressing that the particle will occur
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at instant ¢ in the region of space delimited by the inequalities on condition that at
the initial instant 7 it was localized at the point which is determined by position
vector y.

It is being proved in the literature* 8 that in case of the Ito calculus, function f is
the solution of the forward partial differential Kolgomorov equation (see relations
(24.2) and (25.2)) where, for the drift velocity is inserted the more general expression
from Eq. (7)

ofjot + V. (fv*(x, 1) + ofj(x, 1)) — 3V . (V. (B(x,1)f)) = 0. 9)
Diffusion tensor B is here given by the expression
B(x, 1) = G(x,1).G*(x, 1) ; (10)

its matrix is therefore symmetrical and positive definite. Further we shall write down
the divergence of this expression (see (4.3))

V.B(x, 1) = j(x,1) + k(x, 1), (11)
where vector j is defined by Eq. (5) and vector k by the relation

K(X(1), 1) = G(X(1), 1) . [V . G(X(2), 1)] - (12)

On inserting from Eq. (11) into Eq. (9), we obtain the “generalized” diffusion
equation

offor + V. [f(v¥(x, t) + (« — 1/2) j(x, t) — 1/2k(x, 1))] —
— 1/2V . [B(x,t).Vf] = 0. (13)
The solution of Eq. (13) is as well given by the unconditional probability density
p(x, t) which is obtained from the initial distribution of random function X (see
Eq. (19.1)):
p(x; 1) = [f(x; |y ©) p(y; 1) dy . (14)
In case of the Stratonovich definition of stochastic integral (i.e., for « = 1/2),

the middle term of sum in the first brackets is vanishing and the last two terms can
be added for

V. [fk(x, 1) + B(x,1).Vf] = V.[G(x.1).(V.G(x, 1) f)] (15)

holds; after inserting from this relation into Eq. (13), we obtain the usual expression
for the Stratonovich form of diffusion equation?-®.

In contribution?, the “transport” diffusion equation was proposed for the case
when o = 1:

offor + V. [ (x, 1) + f(j(x, t) — k(x,1))] — 4V . [B(x,1).Vf] =0. (16)
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1252 Kudrna, Turzik:

(In the corresponding equations of the paper cited, the corresponding quantities
were designated by superscript T.) The last term of this equation is, as to the order
of differential operators, identical with the expressions used in differential equations
for transport of heat and/or substance component. The solution of Eq. (16) therefore
may be also the concentration of substance component for the transformation

e(x, ) = kp(x, 1)//g(x) (17)
holds (see relation (21.3)).

Provided function ¢ has the meaning of concentration, constant k is equal to the
total amount of component, in case of temperature it is proportional to the enthalpy
of fluid in the subspace considered. Symbol g denotes the determinant of metric
tensor'! (see 12.3)) for the probability density — unlike temperature or concentra-
tion — is not transformed as an absolute scalar. In case of the Cartesian coordinates,
the value of g is identically equal to unity. The components of tensor B in Eq. (16)
can then be considered either as diffusion coefficients or thermal conductivity coeffi-
cients. This coefficient is often scalar, i.e., B(x, t) = IB(x, t) where I is the identity
tensor. In the simplest case B can be considered to be a scalar constant.

As it has been reported in foregoing papers' ~3, the fundamental problem of ap-
plying this mathematical theory in chemical engineering is the question which of the
drift velocities is to be identified with the velocity of fluid in which the process takes
place, which formally means to choose suitably parameter « in Eqs (9) or (16). At
the same place, the view was expressed that this question cannot be apparently
solved unambiguously, however, that in most chemical-engineering problems, Eq.
(16) (with « = 1) under the simultaneous validity of the condition (see Eq. (8.3))

j(x, 1) = k(x, 1) (18)
is used.
In the following paragraph, the validity of this condition will be investigated
in more detail.

Condition for the Record of ““Classical” Diffusion Equation
on the Basis of Notion of Stochastic Motion of Diffusing Particles

When recording stochastic equations (6) which describe the motion of diffusing
particles, it is considered that the coefficients in these equations, i.e., functions
v¥(x, 1) and G(x, t), are a priori known. Then it follows from condition (18) that
not every function G(x, t) makes it possible to write down the diffusion equation
in the classical form.

When describing the transport processes, however, the coefficients of partial
differential equations (9) or (13), v*(x, t) and B(x, 1) are set (as found, e.g., by experi-
ment), the symmetry of tensor B being usually considered. As it follows from Eq.
(10), the last assumption is the necessary condition for the existence of a relation
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between the stochastic differential equations and the respective diffusion equations.
The matrix of diffusion tensor must be further positive definite, which among others
means that the values of main minors as well as the value of determinant of this
matrix is in all cases positive!?.

For the record of corresponding stochastic (differential) equations is then, on the
contrary, necessary to determine tensor G. It is to be emphasized that this problem
is not usually unambiguous and that, therefore, more stochastic equations may
correspond to one diffusion equation. It is then advantageous to choose from
a series of possible stochastic equations such an equation in which the matrix of
tensor G has as simple as possible form from the point of view of determining its
elements.

Providing that the elements of matrix of tensor B are set, tensor G is not determined
only by Eqs (10) unless this tensor is, e.g., symmetric as well. However, it is possible
to make sure simply, e.g., by writing down condition (18) in Cartesian coordinates,
that it is not fulfilled by the elements of matrix of symmetric tensor G. Therefore,
n(n + 1)/2 relations and further n equations follow generally from Eq. (10) and
condition (1 8), respectively, for the determination of elements of the tensor G matrix
for the set tensor B. To determine all the elements of the tensor G, the condition

n*=n(n+1)2+n (19)

must apparently hold, which is fulfilled for n = 3 only, therefore for three-dimen-
sional problems. The one- or two-dimensional problems are overdetermined by the
number of relations given by the last equation. However, we shall show below (see
Appendix I) that in case of the scalar diffusion coefficient, B(x, t), (consequently
even in case of one-dimensional problems), condition (18) is fulfilled automatically
and so simply holds

G(x,t) = + /B(x,1). (20)

For the two-dimensional problems, however, five equations are available for four
elements of tensor G and therefore one constraint must hold between elements of
matrix of tensor B which therefore cannot be set arbitrarily. Multidimensional pro-
blems (exceeding three-dimensional) would be underdetermined.

Thus, it is possible to draw the conclusion that in three-dimensional Euclidean
space — on setting tensor B with symmetric and positive definite matrix — it is pos-
sible to determine the elements of matrix of tensor G for condition (18) to be fulfilled.
From the concepts of stochastic motion of diffusing particles and application of the
corresponding mathematical apparatus it is therefore possible, under the given condi-
tions, always to derive the ‘‘classical” diffusion equation for the description of
transport phenomena. The “‘transport” drift velocity (i.e., the case when parameter «
equals unity) then can be identified with the velocity of fluid in which the mass or
heat transfer takes place.
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1254 Kudrna, Turzik:

The finding of elements of matrix of tensor G is not, however, a simple problem.
In preceding paper®, condition (18) was written down in a sufficiently general form
— i.e., in orthogonal curvilinear coordinates (Eq. (28.3)) which is given here in some-
what altered form

Z": icfj_i(g_ﬂ)_zz 3 |:ij( 01ﬂ€i_Gji51nej>]+

=1 7 e 0z; \Gy; iz .=x e; 0z; e, 0z,

+y [Biia"lei -8, n <—e)] [k=1,..n] (21)

By=Y GGy, [i=1onj=1,..,n] (22)

follows from Eq. (10).

The orthogonal curvilinear coordinates are designated by symbols z;, symbols B;;
and G;; are so-called natural coordinates of tensors'?, symbols e, are roots of diagonal
elements of matrix of fundamental tensor and are determined by the equations

CEET e w

and x, are Cartesian coordinates. In case of orthogonal coordinates, the relation
= /g holds from which it would be possible to substitute into Eq. (17).
The written equations make it possible to look for the solution for single types
of diffusion processes (see also ref.!):

a) homogeneous and isotropic diffusion when the diffusion coefficient is a scalar
constant: B(x, t) = IB; B = const. The value G is in this case equal to square root
of constant B. (From the point of view of modelling the stochastic processes with
respect to the symmetry of the Wiener process in Eq. (6), it is not decisive whether
positive or negative value is chosen),

b) non-homogenous and isotropic diffusion — diffusion coefficient is a scalar
function of spatial coordinates. It follows from Appendix I that even in this case,
condition (18) is always fulfilled and function G(x, ) can be calculated from Eq. (20),

¢) homogeneous and anisotropic diffusion — this type of processes is characterized
by diffusion tensor B whose all elements written down in the Cartesian coordinates
are constants. In this case, condition (18) is fulfilled automatically and n(n — 1)/2
elements of matrix of tensor G may be chosen arbitrarily. Then it is advantageous
to arrange this matrix as triangular one with zero elements above the diagonal. It
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holds here above all the relation between elements of matrices of tensors B and G:

i

BJ=ZGiijk’ [i=1,...,n;j=1,---,n]- (24)

Diagonal elements of matrix of tensor G can be determined in terms of simple ex-
pressions

G = (D,/ i-1) 1/2 [’ =1, ] (25)

where D; are main minors of matrix of tensor B and D, = 1. In case of a positive
definite matrix, they have always positive value'?. The non-diagonal elements can
be found from the recurrence relations

-1
G; = (Bji —k; ijGik)/ij, [i =2,..,nj< i] . (26)

The first three main minors of matrix of tensor B have the form
D, =By;; D,=BB;;, — B1z >
Dy = By B,;;B;3;3 + 2B,B,3B,; — (311353 + B,,Bi; + Bsstz) . (27)

In curvilinear coordinates, some components of tensors are a function of coordi-
nates even in anisotropic homogeneous diffusion as it follows from the transforma-
tion relations

Z Z oz (?z . (28)

k=1m=1 6xk 6x

components in curvilinear coordinates are designated by apostrophe.

d) non-homogeneous and anisotropic diffusion is the case when the components
of tensor B are functions of spatial coordinates. In general, Eqs (21) and (22) hold
here which are rather complicated. We succeeded in finding their analytical solution
only for the two-dimensional case.

CONCLUSION

This contribution completes the series of preceding papers' =3 so that it generalizes,
complements and/or corrects the results included in them. It is proved in it above
all that for every ‘‘classical” diffusion equation with the set factors v and B, i.e.,
the fiuid velocity and diffusion tensor, there exists the corresponding stochastic
(differential) equation stemming from the formerly? defined ““transport™ stochastic
integral (i.e., for o = 1). Two-dimensional problems are an exception which require
a constraint between the set components of matrix of tensor B. We succeeded in
explicit finding the general form of this condition (relation (4.16) in Appendix II).
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As to a general solution for three-dimensional problems — even if it was shown
that it exists and does not require a constraint among the elements of matrix of
tensor B — we failed to find it even in the simplest cases of Cartesian or cylindrical
coordinates. In some special cases it is possible to determine the elements of matrix
of tensor G, if the diffusion coefficient is scalar or when the elements of matrix of
tensor B are not functions of spatial coordinates. In this last case it is suitable to
choose the matrix of tensor G as triangular one.

In this connection it is necessary to give more precision and to correct some
conclusions drawn in preceding paper. From reference?, which unlike this work
stems from the set factors v and G, it is possible to draw conclusion that the con-
sidered problem has a solution in the case when the components of tensor B are
a linear combination of three scalar functions of spatial coordinates (see relation
(34.2)). In this case, the components of tensor G have the form G;; = c;;h;, where
h; are the said scalar functions of spatial coordinates and ¢;; are constants. How-
ever, it is necessary to define this conclusion with more precision so that it holds
only for Cartesian coordinates. Likewise it is necessary to give precision to the
statement that condition (18) is fulfilled for every diagonal matrix. This statement
holds only in Cartesian coordinates; in general case, all diagonal elements must
equal.

For the stochastic modelling of diffusion processes, however, it is not necessary,
even in this complicated case, to determine the elements of matrix of tensor G in
terms of condition (18). We can exploit the *“generalized” diffusion equation (13)
introduced in the first part of this work which is able to describe the ““classical”
diffusion® regardless of the fact how the corresponding stochastic integral (relation
(4))is defined. The sum in parentheses of the second term of Eq. (13) can be considered
to be the fluid velocity and moreover, with respect to Eq. (11), to write

v(x, 1) = v¥(x,t) + aj(x,1) — 3V . B(x, ). (29)

The corresponding stochastic equation (6) then takes the form

X(t) = y + L [WX() 9) = (X(s). o) + 4V . BX(s), )] ds +  (30)
+ [L[G(X(s), ) . AW(S)T,

in which v and B are the set coefficients. Then it is not necessary to take account
of condition (18), and the elements of matrix of tensor G can be easily found, e.g.
on the assumption that this matrix is triangular, i.e., from Eqs (24) and (27). In this
way it is therefore possible to model every “classical” diffusion equation regardless
of the fact how the stochastic integral in the last term of Eq. (30) is defined. How-
ever, velocity v then need not generally be identical with drift velocity v* even if the
stochastic integral in Eq. (1) is defined for any a from the given interval.
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APPENDIX I

The record of condition (18) for diagonal matrix of tensor B. In the given case,
the diagonal matrix is the simplest matrix of tensor G, and Eq. (22) reduces to the
form

=G, [i=1,..n]. (4.1)

Further, the numerator must be equal to denominator in each term of summation
on the left-hand side of Eq. (21) and on differentiating, all the sum is equal to zero.
Further, we introduce the designation

dlne;

= Yix (A'Z)

e, 0z,

on the right-hand side of Eq. (21) and on taking account of the second of Egs (23)
we can write down

__Zl Z Wi = Gyy) Gy =Z( Wik — Buii — BuWu +
1970 =t
+ Z Bik¢ji) [k = 1, e n] (A3)
j=1
In a diagonal matrix, the elements with unequal subscripts are zero, and therefore
2 ZlGiink‘pik =Y (Bi; + Bu) ¥ixc s (4.4)
i= i=1
ik ik

and according to Eq. (4.7)

(G“ - Gkk) ‘ﬁ ik =0. (A'5)

Eipage

In case of orthogonal curvilinear coordinates, consequently, all the elements of
diagonal matrix must be mutually equal.

APPENDIX II

Relation between components of diffusion tensor and calculation of components
of stochastic tensor in two-dimensional problems. Let us assume that all three
elements of matrix of diffusion tensor B of dimension 2 x 2 are given as functions
of both the spatial coordinates and that they are such that this matrix is symmetric
and positive definite. It is necessary to find four elements of stochastic tensor G.
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Relations (22) will be only three in this case:

G}, + G}, =By ; G, + G3, =By, GGy + G,Gy, = By, = By, .
(A4.6)

Further, we shall apply Eqgs (21) only to two coordinates; after rearranging we
shall obtain, still on taking account of Eq. (4.2):

62, 2 (Gu1) 4 gz, 0 (Giz) _
€, 0z; \Gy, e; 0z; \G,,

= (—l)i ‘l’ij[z(GuGzz — Gy,Gy;) + (Byy + Byy)]s [i,j =121 #j].
(47)

So we have five independent equations for four unknown functions; as it has been
mentioned, a dependence must exist in this case between components of tensor B,
First we introduce new dimensionless functions by the equations

H; = Gij/\/Bii Y= 312/(311322)1/2’ [i’j =1, 2] . (A-8)
Relations (4.6) are simplified in this way to
H, + H},=1; H3 +H}, =1; HyHy +H;Hy =7. (4.9)

Further, we substitute these dimensionless functions for the elements of matrix
of tensor G in Egs (A4.7), differentiate and after algebraic rearrangements and on
taking account of the last of Eqs (4.9) we get

0H,,
oz

¢oH,,
¢z

oH oH
- Hy — + Hyy —2
i 0z, dz;

HZI _HIZ

=y—+ (-1 e [2(H\Hzy — Hi3Hyy) + (Byy + Byy)/(By1B13)' ]

N
i

[ij=12i#]]. (4.10)

We have introduced the designation

e=1%In (Bzz/Bu) . (A-”)

Further we shall differentiate the first two equations (4.9), and gradually from
these expressions, we shall substitute in each term on the left-hand side of Eq.
(A4.10). For instance, for the first term we have

cH oH
—H = —-H,;H,, ——12/
6z,

i i

0H ,

-
&

H21 H11 = “H12H21

Ji - -

i
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= —H,,H,, gg(arcsin H,,).

Z;

After analogous operations with all the terms on the left-hand side of Eqs (4.10)
and on using the rules of subtraction of inverse goniometric functions, we obtain
the relation

0 . ,
(Hy Ha; - H12H21)5‘ar05m (HpHiy ~ HyHyy), [i=12].

1

Moreover, it follows from Eqs (A.9) that the first factor on the left-hand side of the
last equation can be expressed as a function of y:

H{ H;, — H,;H,, = (1 - 72)”2- (A'IZ)

Equation (4.10) are divided by this factor and for the sake of brevity we introduce
the designation

A =arcsin (H,,H,, — Hy Hyy)s @ = y/(1 — 932, (4.13)
¢ =2+ (By; + By,)/(B1By2 — Bi,).
In the end we get two equations

M

éz,

@

0 .
as + (—l)‘ ei(/IijQ ’ [la] = 1~ 2; i #]] (A.14)
Z
whose right-hand sides depend only on the set functions B;;. To obtain an unambi-
guous solution, we differentiate each of them with respect to the second variable;
we get
&2 o%e do O ¢
’ 40—‘_—"“—(8“—"‘—(1#21%@),

¢z, 0z, 0z, 0z, ¢éz,0z, @z,
A2 ~2 - -
0°A 0% do de 0
=0+ — — (¥12¢,0) - (4.15)
0z, 0z, 0z, 0z, @z,0z, @&z,

The left-hand sides of both equations are equl each other; the first terms of right-
-hand sides as well; in order that also the second terms on the right-hand side may
equal each other, the condition

0¢ e 0 0 Ce é
— Tt — (V21€20) = — — — — (¥42€,0) (A.16)
0z, 0z, 0z, 0z, ¢z, 0z,

must hold, which is the discussed dependence between the elements of matrix of
tensor B in two-dimensional problems. Both equations (A4.15) are then identical and
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their solution is

2 )
A= J].[ga 0% + 6—@ EE— + ai (WZlezg)] dZ1 d22 . (A.17)
1

0z, 0z, 0z, 0z,

Furthermore we lay
% = arcsiny. (4.18)

Then it is possible to make sure easily that single functions H;; are determined by
the relations

Hy =cosa; H,,=sina; H, =sinf; H,, =cosf, (4.19)
where

a=(x+A)2; B=(x—2)2. (A4.20)

Single elements of matrix of tensor G are established from the first equations
(4.8).

Note: In case of the Cartesian coordinates, factors y;; are identically equal to zero
and condition (A4.16) is then fulfilled if

0 = F(e), (4.21)

where F is an arbitrary function. The solution of Eq. (A4.17) is then given by the
relation

A= [F(e)de. (4.22)

Condition (A4.21) can be written down as an explicit expression of dependence of
non-diagonal element of matrix of tensor B on both the others

By, = (By1B12)"? ®(By,[B1,) (4.23)

where @ is another arbitrary function; between functions F and &, naturally, there
exists an unambiguous relation.

LIST OF SYMBOLS

2 1

diffusion tensor, m“s™
diffusivity, m? s~ 1
natural coordinate of diffusion tensor, m* s~
concentration of substance component, kg m™
main minor of matrix of tensor B

product of transformation coefficients (e = |/g)
transformation coefficient

transitive probability density, m™"

stochastic tensor, m s~ 1/2

2 1

e

3

A v oS B
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><><i<q<~'m:>¢-z-“-\"ocl

AR N~

AN W N —

10.
11.
12.

Co

tensor transposed to tensor G, m s~ 1/2

determinant of metric tensor
identity tensor

vector defined by Eq. (5), ms™
vector defined by Eq. (J12), ms”~
proportionality constant in Eq. (/7), kg
rank of tensor matrix

unconditional probability density, m™~
time, s

fluid velocity, ms™
drift velocity, m s~
(multidimensional) Wiener process, s
position vector of diffusing particle — random function of time, m
position vector of particle — variable of distribution function, m
initial position of particle, m

curvilinear orthogonal coordinate

constant characterizing type of stochastic integral

initial time instant, s

1
1

n

1
1
1/2

REFERENCES

. Kudrna V.: Collect. Czech. Chem. Commun. 53, 1181 (1988).

. Kudrna V.: Collect. Czech, Chem. Commun. 53, 1500 (1988).

. Kudrna V.: Collect. Czech. Chem. Commun. 56, 602 (1991).

. Gichman 1. 1., Skorokhod A. V.: Teoriya sluchainykh protsessov IIl. Nauka, Moscow 1975.
. Gardiner C. W.: Stokhasticheskie metody v estestvennykh naukakh. Mir, Moscow 1986.

. Van Kampen N. G.: Stochastic Processes in Physics and Chemistry. North Holland, Am-

sterdam 1981.

. Watanabe S., Ikeda N.: Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy.

Nauka, Moscow 1986.

. Seinfeld J. H., Lapidus L.: Mathematical Methods in Chemical Engineering, Vol. 3. Prentice-

-Hall, Englewood Cliffs 1974.

. Stratonovich R. L.: J. SIAM Control 4, 362 (1966).

McClintock P. V. E., Moss F.: Phys. Lett. A 707, 367 (1985).
Madelung E.: Matematicheskii apparat fiziki. Fizmatgiz, Moscow 1961.
Kurosh A. G.: Kurs vysshei algebry. Nauka, Moscow 1971.

Translated by J. Linek.

llect. Czech. Chem. Commun. (Vol. 57) (1992)





