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The dependence is discussed between the “classical” diffusion equation commonly used in 
chemical engineering and the stochastic differential equations which describe this diffusion 
from the point of view of micromotion of individual particles. The resulting equations can be 
useful above all for the modelling of more complex diffusion processes. 

In preceding some problems were pointed out arising on applying the 
mathematical theory of random p r o c e ~ s e s ~ - ~  for the description of transport pro- 
cesses used in chemical engineering. The differences were shown in the record of the 
Kolgomorov and “classical” diffusion equation which existed in case that the diffu- 
sion coefficients in the equations are functions of spatial Coordinates’. 

In addition the works5-’ were cited referring to the relations between the diffusion 
equations and the stokhastic differential equations and to the fact that different forms 
of the record of diffusion equations depend on the different definitions of stochastic 
integral. A new definition of the stochastic integral was proposed’ which, in some 
cases, makes it possible to record the “classical” form of diffusion equation used 
i n  chemical engineering for the description of mass and heat transfer. 

In the next paper3, some additional problems were pointed out arising from the 
record of diffusion equations in curvilinear coordinates. Among others also the 
complication of conditions is concerned which make it possible to record in this 
case the “classical” diffusion equation on the basis of stochastic approach. 

In the present contribution, the conditions mentioned are given in more detail; 
as the most general case, their record in orthogonal curvilinear coordinates is con- 
sidered. The cases are presented in which we succeeded in finding the analytical 
solution. To be able to discuss the different forms of diffusion equations and relations 
between them we shall write down the definition of stochastic integral in a generalized 
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form first and then the relations between the single forms of stochastic differential 
equations. 

“Generulized” Record of Stochastic Differential Equation 

I n  preceding paper2, the “generalized” stochastic integral was defined - in some- 
what different designation - by relation (23.2)* as 

where a is the constant which can acquire values in the given interval. X(t)  denotes 
the random vector function of deterministic argument t whose physical meaning 
is time. G(x, t) is the second-order tensor whose single components are in general 
deterministic functions of spatial coordinates designated here by the position vector 
x and explicitly also by time. Function W(t) is the multidimensional Wiener process 
- random function of time - whose probability density is determined by the rela- 
tion (compare relation (3.2)) 

n n 

P {  n ( ~ ( t )  < wi)} = (27~t)-”/~ exp ( -  C w2/2t) . (2) 
d“ 

i =  1 i =  1 fi awi 
f = 1  

The increments of quantities in Eq. ( I )  are defined by the relations 

Axk = X(tk+1) - x ( t k )  ; AWk = W ( t k + l )  - w(tk)  ; A t k  = t k + l  - f k  (3) 

and @ = max At,. The sequence of single values of arguments is given by the rela- 
tions t ,  = t o  < t ,  < * . -  < tk < t k + ,  < * . .  < t ,  = t,. Full stop between symbols 
G . W denotes the scalar (inner) product. 

The fundamental - mathematically correct - definition of stochastic integral is 
the Ito definition (see, e.g., ref.’) expressed by Eq. ( I )  for a = 0 for only in this case 
the factors G . AWk of each term of the sum on the right-hand side of the equation 
can be stochastically independent. (In ref.’, the quantities which are connected with 
this Ito definition are denoted by superscript I.) 

In literature5-’ is further given the definition of the Stratonovich integral (for the 
value of a = 1/2 in Eq. ( I ) ) ;  the author’ himself stems here from the Ito definition. 

* will be designated in the form (K.1) 
where K stands for the number of relation and I for the reference number in the present list 
of references. 

References to the relations in foregoing 
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(The corresponding quantities connected with the Stratonovich definition are de- 
signated by superscript S in ref.2.) This procedure was generalized2, and it is possible 
to show easily that the relation between the generalized definition of the stochastic 
integral and the Ito definition is given by the equation 

J:." [G(X(t), t) . dW(t)]" = J:: [G(x(t), t) . dW(t)]O + J:: j(x(t), t )  dt , 
( 4 )  

where the vector of "semidiffusion" flux 1 is given by the relation (compare (15.2))  

Symbol V denotes the Hamilton differential operator and G+ tensor transposed 
with respect to tensor G. Square brackets determine the order of operations. The 
different expressions for the stochastic integral are conditioned by the fact that 
the difference of the Wiener process, AW,, converges to zero more slowly than the 
time interval Atk. 

The proposed record of stochastic integral makes it possible to get a generalized 
record of stochastic differential equation which will be given here in the integrated 
form 

X(t) = y + 1: v"(X(s), S) ds + J: [G(X(s), S) . dW(s)]" ; (6) 

y denotes the initial condition of solution, i.e., the value of random function X at 
instant T. Deterministic vector function vu is often called the drift velocity and the 
first integral on the right-hand side of the relation is a common integral in the 
Riemann sense. In order that the solutions X(t) for different definitions of the 
second integral may be identical (in the stochastic sense), the drift velocity must 
acquire different expressions. It follows from Eqs (4 )  and (6) that the relation 

v"(x(t), t )  = vB(X(t), t )  + (D - a) j(x(t), t )  , [O s a, P s 13 (7) 

holds between these expressions. 
The given relations may be of importance for the stochastic modelling of diffusion 

processes in terms of computers; it is reported" that the Stratonovich form of 
stochastic integral is suitable for this purpose. 

In diffusion processes, the random function X(t) determines the position of dif- 
fusing particle in the space. Its general probabilities characteristic is given by the 
transitive probability density 

i= 1 

In the braces the probability is written down expressing that the particle will occur 
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at instant t in the region of space delimited by the inequalities on condition that at 
the initial instant z it was localized at the point which is determined by position 
vector y. 

It is being proved in the l i t e r a t ~ r e ~ - ~  that in case of the Ito calculus, function f is 
the solution of the forward partial differential Kolgomorov equation (see relations 
(24.2) and (25.2)) where, for the drift velocity is inserted the more general expression 
from Eq. (7) 

af/at + V . ( ~ v ’ ( x ,  t )  + afj(x, t ) )  - +V . (V . ( B ( x ,  t)f)) = 0 .  

B ( x ,  t )  = G ( x ,  t )  . G + ( x ,  t )  ; 

( 9 )  

(10) 

Diffusion tensor B is here given by the expression 

its matrix is therefore symmetrical and positive definite. Further we shall write down 
the divergence of this expression (see (4 .3 ) )  

v . B(x,  t )  = j ( x ,  t )  + k ( x ,  t )  , 

k ( X ( t ) ,  2) = G ( X ( t ) ,  t )  * [v - G ( X ( t ) ,  t ) ]  * 

(11) 

(12) 

where vector j is defined by Eq. ( 5 )  and vector k by the relation 

On inserting from Eq. (11) into Eq. (9) ,  we obtain the “generalized” diffusion 
equation 

@-/at + V . [ f (v”(x ,  t )  + (a  - 1/2) j ( x ,  t )  - 1/2k(x ,  t))] - 

- 1/2v .  [B(x ,  t )  . Vf] = 0 .  ( 1 3 )  

The solution of Eq. (13) is as well given by the unconditional probability density 
p ( x ,  t )  which is obtained from the initial distribution of random function X (see 
Eq. (19.1)): 

P ( x ;  t )  = J f ( x ;  tly; 7) P(Y; 7) dy * (14) 
In case of the Stratonovich definition of stochastic integral (i.e., for a = 1/2), 

the middle term of sum in the first brackets is vanishing and the last two terms can 
be added for 

V .  [ f k ( x ,  t )  + B(x,  t )  . V j ]  = V .  [ G ( x ,  t )  . ( V .  G ( x ,  t ) f ) ]  (15 )  

holds; after inserting from this relation into Eq. (13), we obtain the usual expression 
for the Stratonovich form of diffusion equationzp9. 

In contribution’, the “transport” diffusion equation was proposed for the case 
when 5~ = 1: 
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(In the corresponding equations of the paper cited, the corresponding quantities 
were designated by superscript T.) The last term of this equation is, as to the order 
of differential operators, identical with the expressions used in differential equations 
for transport of heat and/or substance component. The solution of Eq. (16) therefore 
may be also the concentration of substance component for the transformation 

4x9 t )  = k d x ,  t ) / J g ( x )  (17) 
holds (see relation (21 .3 ) ) .  

Provided function c has the meaning of concentration, constant k is equal to the 
total amount of component, in case of temperature it is proportional to the enthalpy 
of fluid in the subspace considered. Symbol g denotes the determinant of metric 
tensor" (see 12.3))  for the probability density - unlike temperature or concentra- 
tion - is not transformed as an absolute scalar. In case of the Cartesian coordinates, 
the value of g is identically equal to unity. The components of tensor 6 in Eq. ( 1 6 )  
can then be considered either as diffusion coefficients or thermal conductivity coeffi- 
cients. This coefficient is often scalar, i.e., 6 ( x ,  t )  = IB(x, t )  where I is the identity 
tensor. In the simplest case B can be considered to be a scalar constant. 

As it has been reported in foregoing papers'-3, the fundamental problem of ap- 
plying this mathematical theory in chemical engineering is the question which of the 
drift velocities is to be identified with the velocity of fluid in which the process takes 
place, which formally means to choose suitably parameter CI in Eqs (9)  or ( 1 6 ) .  At 
the same place, the view was expressed that this question cannot be apparently 
solved unambiguously, however, that in most chemical-engineering problems, Eq. 
(16) (with CI = 1) under the simultaneous validity of the condition (see Eq. (8 .3 ) )  

, 

j ( x ,  t )  = k(x ,  t )  (18) 
is used. 

in more detail. 
In the following paragraph, the validity of this condition will be investigated 

Condition f o r  the Record of "Classical" Digusion Equation 
on the Basis of Notion of Stochastic Motion of Digusing Particles 

When recording stochastic equations (6)  which describe the motion of diffusing 
particles, it is considered that the coefficients in these equations, i.e., functions 
va(x,  t )  and G(x ,  t ) ,  are a priori known. Then it follows from condition (18) that 
not every function G ( x ,  t )  makes it possible to write down the diffusion equation 
in the classical form. 

When describing the transport processes, however, the coefficients of partial 
differential equations ( 9 )  or (13), vb(x,  t )  and 6 ( x ,  t )  are set (as found, e.g., by experi- 
ment), the symmetry of tensor 6 being usually considered. As it follows from Eq. 
( l o ) ,  the last assumption is the necessary condition for the existence of a relation 

Collect. Czech. Chern. Cornrnun. (Vol. 57) (1992) 



Diffusion Equations 1253 

between the stochastic differential equations and the respective diffusion equations. 
The matrix of diffusion tensor must be further positive definite, which among others 
means that the values of main minors as well as the value of determinant of this 
matrix is in all cases positive”. 

For the record of corresponding stochastic (differential) equations is then, on the 
contrary, necessary to determine tensor G. It is to be emphasized that this problem 
is not usually unambiguous and that, therefore, more stochastic equations may 
correspond to one diffusion equation. It is then advantageous to choose from 
a series of possible stochastic equations such an equation in which the matrix of 
tensor G has as simple as possible form from the point of view of determining its 
elements. 

Providing that the elements of matrix of tensor 6 are set, tensor G is not determined 
only by Eqs (10) unless this tensor is, e.g., symmetric as well. However, it is possible 
to make sure simply, e.g., by writing down condition (18) in Cartesian coordinates, 
that it is not fulfilled by the elements of matrix of symmetric tensor G. Therefore, 
n(n + 1)/2 relations and further n equations follow generally from Eq. (10) and 
condition (18), respectively, for the determination of elements of the tensor G matrix 
for the set tensor 6. To determine all the elements of the tensor G, the condition 

n2 = n(n + 1)/2 + n (19) 
must apparently hold, which is fulfilled for n = 3 only, therefore for three-dimen- 
sional problems. The one- or two-dimensional problems are overdetermined by the 
number of relations given by the last equation. However, we shall show below (see 
Appendix I) that in case of the scalar diffusion coefficient, B(x ,  t ) ,  (consequently 
even in case of one-dimensional problems), condition (18) is fulfilled automatically 
and so simply holds 

G(x, t )  = & J B ( x ,  t )  , (20) 

For the two-dimensional problems, however, five equations are available for four 
elements of tensor G and therefore one constraint must hold between elements of 
matrix of tensor 6 which therefore cannot be set arbitrarily. Multidimensional pro- 
blems (exceeding three-dimensional) would be underdetermined. 

Thus, it is possible to  draw the conclusion that in three-dimensional Euclidean 
space - on setting tensor B with symmetric and positive definite matrix - it is pos- 
sible to determine the elements of matrix of tensor G for condition (18) to be fulfilled. 
From the concepts of stochastic motion of diffusing particles and application of the 
corresponding mathematical apparatus it is therefore possible, under the given condi- 
tions, always to derive the “classical” diffusion equation for the description of 
transport phenomena. The “transport” drift velocity (i-e., the case when parameter a 
equals unity) then can be identified with the velocity of fluid in which the mass or 
heat transfer takes place. 
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The finding of elements of matrix of tensor G is not, however, a simple problem. 
In preceding paper3, condition (18) was written down in a sufficiently general form 
- i.e., in orthogonal curvilinear coordinates (Eq. (28.3)) which is given here in some- 
what altered form 

where, moreover, 
n 

Bij = 1 GikCjk , [ i  = 1, ..., n ; j  = 1, ..., n] 
k =  1 

follows from Eq. (10). 
The orthogonal curvilinear coordinates are designated by symbols zi, symbols Bij  

and Gij  are so-called natural coordinates of tensors", symbols ei are roots of diagonal 
elements of matrix of fundamental tensor and are determined by the equations 

and xk are Cartesian coordinates. In case of orthogonal coordinates, the relation 
e = Jg holds from which it would be possible to substitute into Eq. (17). 

The written equations make it possible to look for the solution for single types 
of diffusion processes (see also ref.'): 

u )  homogeneous and isotropic diffusion when the diffusion coefficient is a scalar 
constant: B(x, t )  = IB; B = const. The value G is in this case equal to square root 
of constant B.  (From the point of view of modelling the stochastic processes with 
respect to the symmetry of the Wiener process in Eq. (6) ,  it is not decisive whether 
positive or negative value is chosen), 

b)  non-homogenous and isotropic diffusion - diffusion coefficient is a scalar 
function of spatial coordinates. It follows from Appendix I that even in this case, 
condition (18) is always fulfilled and function G(x,  t )  can be calculated from Eq. (20), 

c )  homogeneous and anisotropic diffusion - this type of processes is characterized 
by diffusion tensor 6 whose all elements written down in the Cartesian coordinates 
are constants. In this case, condition (18) is fulfilled automatically and n(n - 1)/2 
elements of matrix of tensor G may be chosen arbitrarily. Then it is advantageous 
to arrange this matrix as triangular one with zero elements above the diagonal. It 
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holds here above all the relation between elements of matrices of tensors 6 and G: 

i 

Bij = G i k G j k  , [ i  = 1, ..., n ; j  = 1, ..., n] . (24)  
k =  1 

Diagonal elements of matrix of tensor G can be determined in terms of simple ex- 
pressions 

G i i  = (Di/Di-l)1’2,  [ i  = 1, ..., n] , (25)  

where Di are main minors of matrix of tensor 6 and Do = 1. In  case of a positive 
definite matrix, they have always positive valueI2. The non-diagonal elements can 
be found from the recurrence relations 

The first three main minors of matrix of tensor 6 have the form 

D, = B l l  ; D2 = BllB2, - B:2 ; 

D3 = B11B22B33 + 2B12B13B23 - (B11B:3 + B22B:3 + B33B:2) - (27) 

In curvilinear coordinates, some components of tensors are a function of coordi- 
nates even in anisotropic homogeneous diffusion as it follows from the transforma- 
tion relations 

d Z i  d Z j  . 
k = l  m = l  ax, ax, ’ 

n n  

Bij  = 1 C Bk,- - 

components in curvilinear coordinates are designated by apostrophe. 
d )  non-homogeneous and anisotropic diffusion is the case when the components 

of tensor 6 are functions of spatial coordinates. In general, Eqs (21) and (22)  hold 
here which are rather complicated. We succeeded in finding their analytical solution 
only for the two-dimensional case. 

CONCLUSION 

This contribution completes the series of preceding papers’-3 so that it generalizes, 
complements and/or corrects the results included in them. It is proved in it above 
all that for every ‘‘classical’’ diffusion equation with the set factors v and 6, i.e., 
the fluid velocity and diffusion tensor, there exists the corresponding stochastic 
(differential) equation stemming from the formerly’ defined “transport” stochastic 
integral (i.e., for ct = 1). Two-dimensional problems are an exception which require 
a constraint between the set components of matrix of tensor 6. We succeeded in 
explicit finding the general form of this condition (relation (A.16) in Appendix 11). 
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As to a general solution for three-dimensional problems - even if it was shown 
that it exists and does not require a constraint among the elements of matrix of 
tensor 6 - we failed to find it even in the simplest cases of Cartesian or cylindrical 
coordinates. In some special cases it is possible to determine the elements of matrix 
of tensor G, if the diffusion coefficient is scalar or when the elements of matrix of 
tensor 6 are not functions of spatial coordinates. In this last case it is suitable to 
choose the matrix of tensor G as triangular one. 

In this connection it is necessary to give more precision and to correct some 
conclusions drawn in preceding paper. From reference’, which unlike this work 
stems from the set factors v and G, it is possible to draw conclusion that the con- 
sidered problem has a solution in the case when the components of tensor 6 are 
a linear combination of three scalar functions of spatial coordinates (see relation 
(34 .2 ) ) .  In this case, the components of tensor G have the form Gij = c i j h j ,  where 
hj are the said scalar functions of spatial coordinates and cij  are constants. How- 
ever, it is necessary to define this conclusion with more precision so that it holds 
only for Cartesian coordinates. Likewise it is necessary to give precision to the 
statement that condition (18) is fulfilled for every diagonal matrix. This statement 
holds only in Cartesian coordinates; in general case, all diagonal elements must 
equal. 

For the stochastic modelling of diffusion processes, however, it is not necessary, 
even in this complicated case, to determine the elements of matrix of tensor G in 
terms of condition ( 1 8 ) .  We can exploit the “generalized” diffusion equation ( 1 3 )  
introduced in the first part of this work which is able to describe the “classical” 
diffusion’ regardless of the fact how the corresponding stochastic integral (relation 
( 4 ) )  is defined. The sum in parentheses of the second term of Eq. (13) can be considered 
to be the fluid velocity and moreover, with respect to Eq. ( I I ) ,  to write 

v ( x ,  t )  = v’(x,  t )  + ctj(x, t )  - +V . B(x, t )  . (29) 

The corresponding stochastic equation (6) then takes the form 

in which v and B are the set coefficients. Then it is not necessary to take account 
of condition (18), and the elements of matrix of tensor G can be easily found, e.g. 
on the assumption that this matrix is triangular, i.e., from Eqs (24) and (27). In this 
way it is therefore possible to model every “classical” diffusion equation regardless 
of the fact how the stochastic integral in the last term of Eq. (30) is defined. How- 
ever, velocity v then need not generally be identical with drift velocity va even if the 
stochastic integral in Eq. ( 1 )  is defined for any c1 from the given interval. 
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APPENDIX I 

The record of condition (18) f o r  diagonal matrix of tensor 6. In the given case, 
the diagonal matrix is the simplest matrix of tensor G, and Eq. (22) reduces to the 
form 

Bii = G:i, [i = 1, ..., n] . ( A 4  

Further, the numerator must be equal to denominator in each term of summation 
on the left-hand side of Eq. (21) and on differentiating, all the sum is equal to zero. 
Further, we introduce the designation 

on the right-hand side of Eq. (21) and on taking account of the second of Eqs (23) 
we can write down 

n n  n z ( G i i $ i j  - Gji$ji) G k j  = (Bii$ik - Bik$ii - Bik$ik + 
i = l  j = 1  i= 1 
i# I 

+ 1 Bik$ji) [k = 1, ... n] 
j =  1 

In a diagonal matrix, the elements with unequal subscripts are zero, and therefore 

n n 

and according to Eq. (A.1) 
I 

i # k  

In case of orthogonal curvilinear coordinates, consequently, all the elements of 
diagonal matrix must be mutually equal. 

APPENDIX I1 

Relation between components of digusion tensor and calculation of components 
of stochastic tensor in two-dimensional problems. Let us assume that all three 
elements of matrix of diffusion tensor 6 of dimension 2 x 2 are given as functions 
of both the spatial coordinates and that they are such that this matrix is symmetric 
and positive definite. It is necessary to find four elements of stochastic tensor G. 
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Relations (22) will be only three in this case: 

G:1 + G:2 = B11 ; G,Z1 + Gi2  = B22 ; G,1G21 + G12G22 = B12 = BZ1 . 
64.6)  

Further, we shall apply Eqs (21) only to two coordinates; after rearranging we 
shall obtain, still on taking account of Eq. (A.2) :  

G:, L(5) + G i 2  
e, azi G21 

= (-11, IC/ij[2(GllG22 - Gl2GZ1) + (Bl l  + &)I ; [ i , j  = 1,2; i # j ] .  
(A.7) 

So we have five independent equations for four unknown functions; as it  has been 
mentioned, a dependence must exist in this case between components of tensor B. 

First we introduce new dimensionless functions by the equations 

Hij = Gij/JBii : y = B12/(BllB2Z)1’2, [ i , j  = 1, 21 . ( A 4  

Relations (A .6 )  are simplified in this way to 

H f l  + H : 2  = 1 ; Hi, + H i 2  = 1 ; H1,H2, + H12H22 = 7 .  (A.9) 

Further, we substitute these dimensionless functions for the elements of matrix 
of tensor G in  Eqs (A.7) ,  differentiate and after algebraic rearrangements and on 
taking account of the last of Eqs (A.9)  we get 

a& 
“Z, 

= Y, + ( - l ) i e i@i j [2 (~11~22  - ~ 1 2 H 2 1 )  + (’11 + B22)/(B11B22)1’2] ; 

[ i , j  = 1,2 ;  i # j] . (A.20) 

We have introduced the designation 

& = t In (BZZ/Bll) * (A.11) 

Further we shall differentiate the first two equations (A .9 ) ,  and gradually from 
these expressions, we shall substitute in each term on the left-hand side of Eq. 
(A.10).  For instance, for the first term we have 
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a 
= -H1,H,,  -- (arcsin H l 2 ) .  

azi 

After analogous operations with all the terms on the left-hand side of Eqs (A.10) 
and on using the rules of subtraction of inverse goniometric functions, we obtain 
the relation 

Moreover, it follows from Eqs (A.9)  that the first factor on the left-hand side of the 
last equation can be expressed as a function of y: 

H11H22 - H I z H , ,  = (1 - y2)’”. (A.12) 

Equation (A.10) are divided by this factor and for the sake of brevity we introduce 
the designation 

1. = arcsin ( H ~ , H , ,  - H , , H , , )  ; 47 = y/(1 - y2)”’ ; (A.13)  

e = 2 + (Bll + B22)/(BllB22 - ~ f , ) .  
I n  the end we get two equations 

a& 
iIZ,  OZi 

- cp 7 + ( - I ) ~  ei$ijg,  [ i , j  = I ,  2; i + j] 32 _ -  (A.24) 

whose right-hand sides depend only on the set functions Bij. To obtain an unambi- 
guous solution, we differentiate each of them with respect to the second variable; 
we get 

C2). d 2 E  d q  2 E  d 
i.2, 22, aZl  02, c z ,  2z2 s z l  cp 1 + 7 - + - ( h e 2 e )  7 
.- = 

(A.15)  

The left-hand sides of both equations are equl each other; the first terms of right- 
-hand sides as well: in order that also the second terms on the right-hand side may 
equal each other, the condition 

(A.26) 

must hold, which is the discussed dependence between the elements of matrix of 
tensor 6 in two-dimensional problems. Both equations (A.15) are then identical and 

Collect. Czech. Chern. Cornrnun. (Vol. 57) (1992) 



~~ 

1260 Kudrna, Turzik : 

their solution is 

=jJ[ 9- 3% + - ~ C P  -- a& + 7 a (IC/zleze) dz, dz, . (A.17) 1 az, dz, az, az, az, 

Furthermore we lay 
x = arcsin y . (A.18) 

Then it is possible to make sure easily that single functions Ifij are determined by 
the relations 

H , ,  = cos tl ; H,, = sin tl ; H,,  = sin p ; H 2 ,  = cos p ,  (A.19) 

(A.20) 

Single elements of matrix of tensor G are established from the first equations 

Note: In case of the Cartesian coordinates, factors are identically equal to zero 

where 
Q = (. + n>/2 ; p = ( x  - 4 / 2 .  

(A.8) .  

and condition (A.16) is then fulfilled if 

cp = F(&)  9 (A.21) 

where F is an arbitrary function. The solution of Eq. (A.17) is then given by the 
relation 

2 = SF(&) ds . (A.22) 

Condition (A.21) can be written down as an explicit expression of dependence of 
non-diagonal element of matrix of tensor B on both the others 

(A.23) 

where @ is another arbitrary function; between functions F and @, naturally, there 
exists an unambiguous relation. 

LIST OF SYMBOLS 

B 
B 
Bi J 

Di 
e 
ei 
f 
G 

c 

diffusion tensor, mz s - l  
diffusivity, m2 s- '  
natural coordinate of diffusion tensor, mz s - l  
concentration of substance component, kg m- 
main minor of matrix of tensor 6 
product of transformation coefficients (e = v/g) 
transformation coefficient 
transitive probability density, m-" 
stochastic tensor, m s -  '1' 
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G+ 

g 
I 
i 
k 
k 
n 
P 
t 
V 

V'l 

W 
X 
X 

Y 
zi 
x 
7 

tensor transposed to tensor G, m s-'/' 
determinant of metric tensor 
identity tensor 
kector defined by Eq. (5 ) ,  m s - l  
vector defined by Eq. (12), m s - '  
proportionality constant in Eq. (17), kg 
rank of tensor matrix 
unconditional probability density, m-" 
time, s 
fluid velocity, m s - '  
drift velocity, m s - '  
(multidimensional) Wiener process, s1 '2  

position vector of diffusing particle - random function of time, m 
position vector of particle - variable of distribution function, m 
initial position of particle, m 
curvilinear orthogonal coordinate 
constant characterizing type of stochastic integral 
initial time instant, s 
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